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Abstract

We develop and evaluate a semi-empirical particle-based model of electrophoresis

using extensive mesoscale simulations. We parameterize the model using only mea-

surable quantities from a broad set of colloidal suspensions with properties that span

the experimentally relevant regime. With sufficient sampling, simulated diffusivities

and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and

Henry equations, respectively. This agreement holds for non-polar and aqueous solvents

or ionic liquid colloidal suspensions under a wide range of applied electric fields.
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1 Introduction

Electrophoresis describes the movement of charged particles dispersed in a fluid due to

applied electric fields. Colloids comprised of ceramics,1 carbon nanotubes,2 nanometals,3

polymers,4 phosphors,5 and biological materials6 undergo electrophoretic motion in response

to an applied electric field that acts upon the charged interface between the particle and

surrounding suspension. Some examples of the suspension media are aqueous7 and non-

polar8 solvents, liquid crystals,9 or ionic liquids.10 In addition to the applied field strength,

the electrophoretic velocity depends on the ionic strength, permittivity, and viscosity of the

suspension as well as the potential difference between the surface of the colloid and suspension

(termed the zeta-potential). Electrophoresis is central to electrophoretic deposition (EPD)

in which field-driven particles accumulate at electrodes or liquid-liquid interfaces11 to form

layers that are stabilized by short-ranged van der Waals interactions.12

Recently, EPD using photoconductive electrodes was demonstrated to be an effective ad-

ditive manufacturing (AM) technique to produce sophisticated patterns of multimaterial 3D

composites.13 Another EPD AM strategy builds objects from lines of colloids that are selec-

tively deposited using coaxial cable electrodes.14,15 Furthermore, precise control of individual

particle(s) placement is possible with EPD onto patterned electrodes.16 Enhanced control

of the shape, composition, and performance of functional materials fabricated via EPD AM

can benefit from computationally feasible models that predict transient colloidal depositions

lasting seconds to minutes. A suitable model of EPD must also capture the diffusivity and

electrophoretic mobility, which collectively characterize the stability and mass transport of

colloidal suspensions.17 The electric field strength, suspension properties, zeta-potential, and

colloid radius all influence electrophoretic and Brownian motion. In turn, the relative mag-

nitude of convective and diffusive colloidal motion, as defined by the dimensionless Péclet

number (Pe), influences the packing quality of colloidal deposits. For instance, colloidal

deposits exhibit crystalline packing at low Péclet (where diffusive motion dominates) and

amorphous deposits form at large Péclet (where convective motion dominates).18
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The majority of colloidal suspension models give continuum level descriptions of elec-

trophoresis and EPD.19 Models of EPD kinetics predict mass deposition rates that depend

(at least) on the electrophoretic velocity, electrode surface area, and fraction of colloids that

stick to the deposit.1,20,21 Film thickness models suggest the relative values of the particle and

suspension permittivities dictate the deposit uniformity.22 Finite and discrete element23,24

models elucidate how deposit morphology depends on electrode edge effects and particle

area fraction, electrolyte pH, and current density, respectively. Two commonly-used ana-

lytical models of bulk Brownian and electrophoretic motion include the Stokes-Einstein25

and Henry equations,26 respectively. The Stokes-Einstein equation gives the diffusivity of

a dilute dispersion of spherical particles. The Henry equation predicts the electrophoretic

velocity of colloids with any shape27 to depend linearly on the field, solvent permittivity,

zeta-potential, and inversely to viscosity. It is used widely to infer the zeta-potential from

electrophoretic velocity measurements obtained via light-scattering techniques.28 Despite

their widespread use, continuum EPD models inherently neglect particle-based descriptions

of colloidal suspensions. These inter-colloidal interactions are necessary to understand the

underlying physics that govern the formation and microstructure of the deposit.

There are a variety of modeling techniques that treat colloidal particles explicitly with

pairwise potentials. Methods are subdivided according to whether the coarse-grained solvent

is treated explicitly (by simulating additional solvent particles) or implicitly (by incorpo-

rating additional terms to the pairwise colloid potentials). Dissipative Particle Dynamics

(DPD) model solvent interactions explicitly with particles that represent spherical blobs of

fluid that interact through momentum-preserving collisions.29 Although a mesoscale DPD

electrophoresis model qualitatively reproduced aspects of the Henry equation in a limited

regime,30 the results pertain to a generic DPD system and were not easily relatable to a

specific experimental system. Stochastic Particle Dynamics (SPD) is a similar, albeit more

efficient, method than DPD, which easily can be parameterized to recover desired suspension

viscosity values.31 However, as with coarse-grained explicit solvent models, it is problematic
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to map measurable properties entirely from a specific colloidal suspension to DPD or SPD

models and vice versa.32 Recently, Fast Lubrication Dynamics (FLD) implicit solvent models

exhibited superior accuracy and computational expense than explicit solvent approaches.33

As an added benefit, the suspension properties are input directly into the FLD model.

Using inertial FLD, mesoscale molecular dynamics simulations of an aqueous suspension

of polystyrene colloids reproduced experimentally measured diffusivities at several volume

fractions.32,33 Although only a limited range of suspension parameters were interrogated to

validate simulated diffusivities, the results prove it is possible to model colloids undergoing

purely diffusive motion up to hundreds of seconds. In spite of the available models in the

literature, a model of colloidal suspensions under applied fields has not been presented that

suitably captures electrophoretic phenomena.

In this article, we augment implicit solvent mesoscale approaches to develop a semi-

empirical particle-based model that accurately captures the electrophoretic motion of colloids

over a comprehensive range of experimentally relevant conditions. We extensively param-

eterize the model using only measurable quantities in order to map out the regime where

this approach adequately describes the dynamics of homogenous monodisperse colloidal sus-

pensions. We show that, with sufficient sampling, simulated diffusivities and electrophoretic

velocities match predictions from the Stokes-Einstein and Henry equations across an enor-

mous range of Péclet numbers: 0 ≤ Pe < 108. This validation is a necessary step towards

developing an accurate model of EPD AM.

2 Model Details

The mesoscale model for electrophoresis that we use includes internal and external forces,

given by

Ftotal = FHydro + FBrown + FDLVO + Ffield. (1)
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The first three terms represent the internal forces that account for implicit solvent-colloid

(FHydro,FBrown) and colloid-colloid (FDLVO) interactions. The last term (Ffield) is the external

driving force due to a uniformly applied electric field. All these components are implemented

in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).34

The solvent model35,36 implicitly incorporates dissipative lubrication forces FHydro(r; η)

and Brownian contributions FBrown(r;T ) between nearby colloids at positions r in a contin-

uum suspension with uniform viscosity η and temperature T . Steric, van der Waals, and elec-

trostatic inter-colloidal forces FDLVO(r; a,Acol, λD, A
Yuk) are treated within the Derjaguin-

Landau-Verwey-Overbeek37,38 (DLVO) framework. The former terms are modeled by a

widely-used pairwise potential with characteristic size a and Hamaker constant Acol.39 The

latter term describes electrostatic repulsion between electric double layers formed by ions

in the fluid that screen the surface charge of colloids over the characteristic Debye length

λD. This also is modeled in a pairwise fashion with a variant of the Yukawa potential40

with interaction constant AYuk that is set by the zeta-potential ζ, relative permittivity ε, ion

valence q, and temperature.41 In their present form, the above three pairwise interactions

model colloids without surface conductance and double layer distortion. The external force

that causes electrophoresis Ffield(E; qcol) depends on the applied electric field E acting on a

colloid with effective charge qcol

Ffield = qcolE. (2)

For simplicity, here we simulate bulk electrophoretic motion along a single direction with

uniform electric field with strength Ez. In this work, we apply electric fields beyond the

dielectric strength of fluids (∼ 108 V/m) in order to ensure we have validated the model

for all experimentally realizable fields. For clarity, Table 1 summarizes the complete list of

measurable properties that fully specifies this colloidal suspension model.

It is crucial to assign the correct value for the effective charge of colloids in Equation 2.

This is determined from the total force acting on a colloid experiencing hydrodynamic drag

5



Table 1: Summary of parameters that fully specifies a mesoscale molecular dynamics sim-
ulation of a colloidal suspension. For ease of discussion, we express all simulations relative
to a model reference system that is configured using only measurable properties from a col-
loidal suspension of polystyrene particles in 10% ethanol. We validate the model across
the simulated range of model parameters (rightmost column) that comprehensively spans
experimentally relevant colloidal suspensions undergoing electrophoresis.

Reference Simulated
Parameter Symbol Value Range

Colloid density ρcol 1050× 103 g/m3 ρcol = ρcol
ref

Hamaker constant Acol 10−20 J Acol = Acol
ref

Electrolyte valence q 1 q = qref

Zeta potential ζ -0.05 V −0.5 ≤ ζ/ζref ≤ 1
Relative permittivity ε 40 0.05 ≤ ε/εref ≤ 2

Temperature T 300 K 2/3 ≤ T/Tref ≤ 1
Dynamic viscosity η 10−3 Pa · s 0.1 ≤ η/ηref ≤ 10
Colloid radius a 100× 10−9 m 0.01 ≤ a/aref ≤ 10
Debye length λD 50× 10−9 m a/λD = 2

Electric field strength Ez 0− 1012 V/m

in an electric field moving with steady-state velocity U26,42

− 6πηaU + 6πζaε0ε

(
1 + 5a5

∫ a

∞

φ(r̂)/ζ

r̂6
dr̂ − 2a3

∫ a

∞

φ(r̂)/ζ

r̂4
dr̂

)
E = 0. (3)

In Equation 3, the potential distribution of ions, φ(r), is taken to be the well known linearized

Debye-Hückel approximation that DLVO theory assumes. From Eqns. 2 and 3, the effective

charge of the colloid is given by

qcol =
πζaε0ε

24λ6
D

(
a5λD − a4λ2

D − 10a3λ3
D + 6a2λ4

D + 96λ6
D + a4

(
12λ2

D − a2
)
ea/λD

∫ ∞
1

e−aĝ/λD

ĝ
dĝ

)
,

(4)

where ε0 is the permittivity of free space. Another intuitive, albeit incorrect, approach is to

assign qcol solely from the Debye-Hückel expression that relates the effective colloid charge

to the zeta-potential

qcol
DH = 4πa2ε0εζ

(
1

a
+

1

λD

)
. (5)
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For the case of infinitely dilute electrolytes, λD →∞ and {qcol, qcol
DH} → 4πaε0εζ. Using the

reference values in Table 1, Eq. 4 gives qcol = −2.37 × 10−17 C while Eq. 5 gives qcol
DH =

−6.28 × 10−17 C. Although these two values are the same magnitude, using qcol
DH results

in computed electrophoretic velocities that are 6.28/2.37 ≈ 2.65 times larger than Henry

equation predictions. Only when we use the correct expression for qcol from Eq. 4, do our

model results collapse onto the Henry equation over the entire simulated range of applied

fields in Table 1, as we detail in Section 3.

In order to efficiently simulate bulk electrophoresis, we use the largest allowable time

step for a given suspension viscosity and colloid size, e.g. the most viscous suspension

η = 10 mPa · s with the smallest colloid diameter a = 1 nm simulated permits δt = 10−5

ns while δt ≤ 103 ns is possible in the opposite limit. Thus, with reasonable computa-

tional resources, it is possible to reach simulation times spanning several minutes. For all

simulations performed here, we set the number of particles N col = 1000 within a total vol-

ume V = (200a)3 in order to fix the volume fraction of colloids ≈ 7 × 10−5. This dilute

regime, which characterizes systems with long mean-free paths, is computationally inexpen-

sive to simulate because pairwise interactions (FHydro, FBrown, and FDLVO in Eq. 1) only

are calculated for closely separated colloids. In what follows, we evaluate simulations of

dilute dispersions of colloids that cover the comprehensive range of material properties and

experimental conditions given in Table 1.

3 Results and Discussion

Here, we systematically validate the principle components of the model by comparing simu-

lated diffusivities and velocity distributions to the Stokes-Einstein and Henry equations un-

der a variety of conditions. Our evaluation begins by assessing how well the model captures

pure Brownian motion of colloids in the dilute regime where the Stokes-Einstein equation is

7



valid25

DSE =
kBT

6πηa
, (6)

with Boltzmann’s constant kB. We benchmark the model against equation 6 with the stan-

dard Einstein relation25

Dsim =
1

6
lim
t→∞

d

dt
〈|r(t)− r0|2〉 (7)

to compute the diffusivity from the slope of the mean squared displacement at long times.

Equation 7 is computed by subtracting particle coordinates taken directly after 2× 106 time

steps of equilibration, r0, from time-dependent particle coordinates, r(t), which are collected

for at least 3×109 time steps. Figure 1 shows quantitative agreement between Dsim and DSE

over a range of simulations of model liquid colloidal suspensions. The simulated diffusivities

fall within 5.6% of DSE and the error, as defined by the standard deviation of 10 independent

simulations, is within 10% of D̄sim. The results in Figure 1 are complementary to recent work

by Bolintineanu, et. al.33 in which they validate the same implicit solvent model with a single

suspension viscosity simulated over a range of colloid volume fractions.

0.01
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�4.2%

�1.3%

2.2%

1.1%

�0.2%

5.6%

0.1

1

10

⌘/⌘ref

Figure 1: Simulated diffusivities, Dsim, are compared against the Stokes-Einstein results,
DSE, for a dozen colloidal suspensions (legend). Markers are plotted at the average value
of 10 independent simulations with error bars computed from the standard deviation. The
diffusion constants quantitatively agree across six orders of magnitude of computed values
as indicated by the averaged deviations 1− D̄sim/DSE ≤ ±5.6%.

Having validated the implicit solvent model to reproduce Stokes-Einstein diffusivities
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Figure 2: Velocity component distributions (vx, vy, and vz in red, purple, and black, respec-
tively, with means and standard deviations in legends) that are sampled from 20 two-second
simulation trajectories of the reference system (solid lines, a-c) under three electric fields
(titles) and non-reference suspensions with larger colloids a = 400 nm (dash-dotted lines, a),
lower system temperature T = 200 K (dotted lines, b), and higher viscosity η = 2 mPa · s
(dashed, c). (a-c) The standard deviation is invariant to the applied field and exhibits the
scaling σvi ∼

√
T/ηa. (a) Without an applied field, the distributions for a given system are

indistinguishable with mean values v̄i ≈ 0. (b-c) With fields applied in the +z-direction, neg-
atively charged colloids move against the applied electric field with a mean electrophoretic
velocity that scales like v̄z ∼ Ez/η. (a-c) Irrespective of the field, v̄x ≈ v̄y ≈ 0.
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across a wide range of colloid sizes and suspension viscosities, we now take a detailed look at

the interplay between the colloidal suspension pairwise potentials and the uniformly applied

field. Specifically, we examine how the colloidal velocity distributions depend on the applied

field strength, colloid size, and suspension temperature and viscosity with which we initialize

the model. We determine the steady-state velocity of each colloid i from the slope of particle

displacement

vi = lim
t→∞

d

dt

(
ri(t)− ri0

)
(8)

from simulation trajectories that span 2 seconds. Figure 2 shows velocity component his-

tograms {vx, vy, vz} that are sampled from 20 independent simulations. Figure 2(a-c) in-

cludes velocity distributions for the reference system under three experimentally accessible

fields applied only in the z-direction: Ez = {0, 103, 104} V/m. At each field, we also dis-

play distributions from suspensions simulated with larger colloids Figure 2(a), lower system

temperature Figure 2(b), and higher viscosity Figure 2(c) than the reference system. The

standard deviation of each velocity component distribution, σvi is due to Brownian fluc-

tuations imparted by the implicit solvent. Comparing the reference system to the other

simulated suspensions reveals the magnitude of these fluctuations to scale by σvi ∼
√
T/ηa.

The electrophoretic, vz, and purely Brownian velocity components, vx and vy, exhibit normal

distributions with the same width, i.e. within a given system σvx ≈ σvy ≈ σvz . Since we

model an isothermal system, the external driving force imparted by the applied field does

not affect Brownian motion.

In the absence of a field Figure 2(a), the velocity distributions are equivalent v̄i ≈ 0. The

mean of the velocity component parallel to the applied field v̄z is directly proportional to the

applied field while v̄x ≈ v̄y ≈ 0 rigorously for any Ez. As expected from the Henry equation,

electrophoresis is invariant to the temperature of the colloidal suspension Figure 2(b). In

Figure 2(c), the electrophoretic velocity scales like the Henry equation, e.g. v̄z is halved as η

is doubled from the reference value. With a limited set of simulations, Figure 2 illustrates, in

part, the relative impact the applied field strength and colloidal suspension properties have

10



on electrophoretic and diffusive motion. Crucially, the thermostatting algorithm and hydro-

dynamics interactions do not interfere with the flow characteristics of convecting colloids.

We now compare values for the electrophoretic velocity computed from the model directly

to the Henry equation26

vH =
2

3

Ezζεε0
η

f

(
a

λD

)
. (9)

The Henry function, f (a/λD), accounts for suspensions with arbitrarily thick double-layers

and monotonically varies from f(a/λD → 0)→ 1 in the thin double-layer limit to f(a/λD →

∞) → 3/2 in the reverse limit. Importantly, equation 9 and our model assume uniformly

thick double-layers and negligible surface conductance and thus are strictly valid for in-

finitesimal values of the dimensionless Dukhin number (ratio of surface to bulk conductance

→ 0).43 In the large Dukhin limit where surface conductance matters, the nonlinearities

in the electrophoretic velocity that arise44–46 are beyond the scope of this work. Since the

Henry equation predicts electrophoresis to be invariant of volume fraction,47 we proceed

to validate the model in the dilute regime with computationally efficient simulations. We

simulate an array of 54 distinct model systems with a/λD = 2 by systematically varying

across 4 orders of magnitude in a, 3 orders of magnitude in η, 2 orders of magnitude in ε,

and positive and negative values of ζ. For each system, we use equation 8 to compute av-

erage electrophoretic velocities from a series of simulations in which we increase the applied

field strength. Figure 3 shows a subset of 28 model systems with simulated electrophoretic

velocities that match the Henry equation. We found comparisons between model systems

with extremely thick a/λD = 0.02 and thin a/λD = 200 double layers to be equivalent to

Figure 3. For all simulations, the average deviation between the model and Henry equation

is 1− vH/v̄z < ±0.48% across 11 orders of magnitude of computed v̄z. However, the dimen-

sional plots displayed in Figure 3 make it difficult to discern potential deviations of v̄z from

vH.

The model validation is not restricted to colloidal suspensions with only the exact measur-

able properties that we use here. By non-dimensionalizing the system with a Péclet number
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Figure 3: Electrophoretic velocities from simulation quantitatively agree with the Henry
equation 9 (lines) for colloids with ζref = −0.05 and radii 1 − 103 nm (titles, a-d) in
suspensions (legend) with a broad range of permittivities ε = {2, 40, 80} and viscosities
η = {0.1, 1, 10} mPa · s that characterizes non-polar solvents, aqueous electrolytes, and ionic
liquids. Markers are plotted at the average value of 5 independent simulations with error
bars computed from the standard deviation.
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(ratio of convective to diffusive motion),

Pe =
|vH|
DSE

a =
6πa2|Ezζ|εε0

kBT
f

(
a

λD

)
, (10)

we show in Figure 4 that the model accurately captures electrophoretic motion of any ex-

perimentally relevant colloidal suspension with Péclet values 10−3 < Pe < 108. Figure 4

compares the Henry equation against simulated velocities from 54 model systems at 367

distinct Péclet values. The sample time for each simulation, τ , is adjusted so that the elec-

trophoretic displacement of each colloid is approximately 10 diameters, i.e. τ ≈ 20a/vH.

Thus, systems at low Péclet require longer computation times than at high Péclet. The

standard deviation of 5 independent simulations defines the comparison error σvH/v̄z . The

qualitative agreement is significantly better at higher Péclet, i.e. the error and maximum

value of the deviation, |1− vH/v̄z|, decrease at larger Pe. For instance, the maximum devia-

tion for simulations is ±5.6% for Pe ≤ 1 and ±0.71% for Pe > 1. We attribute deviations at

lower Péclet to the difficulty of sampling the convective velocity component in regimes where

Brownian motion dominates. For a single system at Pe = 0.03 as shown in Figure 4(b), as

the sampling window is increased from 15 to 150 minutes v̄z approaches vH and σvH/v̄z drops

by 70%. Additionally, the comparison error decreases with increasing Péclet as shown in

Figure 4(c). This implies that, with longer sampling times at low Péclet, it is possible to

minimize error between vH and v̄z to an arbitrary level.

4 Conclusions

We evaluate a semi-empirical model of electrophoresis by comparing extensive particle-based

simulations against the Stokes-Einstein and Henry equations. The model accurately de-

scribes diffusive and electrophoretic motion of experimentally relevant colloidal suspensions.

In the absence of an applied field, simulated diffusivities are within 5.6% of the Stokes-

Einstein equation across six orders of magnitude. In the low Péclet regime (Pe ≤ 1) where
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Figure 4: (a) The electrophoretic velocity from all simulations (Figure 3 legends with added
grey-edged markers signifying ζ = 0.025 V) and Henry equation agree within ±5.6% across
all Péclet (equation 10) and converge vH/v̄z ≤ 1 ± 1% for Pe ≥ 1. (b) Sampling longer
trajectory times from a model system at Pe = 0.03 reduces the comparison error σvH/v̄z
by 70% while v̄z → 0.99vH as τ → 150 minutes. (c) The comparison error decreases with
increasing Pe and is negligible when electrophoretic motion dominates Brownian fluctuations,
e.g. σvH/v̄z � 10−2 for Pe� 1.

Brownian motion dominates, simulated velocities deviate from the Henry equation values

by ≤ 5.6% and exhibit significant error (& 1%). However, this is attributable to statistical

sampling and not a limitation of the model. In the high Péclet regime (Pe > 1) where the

electrophoretic advection dominates, simulated velocities reproduce theory to within 0.71%.

The results are not limited to colloidal suspensions with the exact set of properties we sim-

ulate. Rather, the model adequately describes any electrophoretic system in which surface

conductance and double-layer distortion can be considered negligible. Furthermore, since

the model performs increasingly well at large Péclet, we expect model accuracy to improve

for colloidal suspensions beyond the comprehensive Péclet regime (Pe . 108) simulated.

We validate the model in the dilute regime for Pe & 10−3 where simulations are computa-

tionally efficient and it is reasonable to compare against the Stokes-Einstein and Henry equa-
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tions. The model has not been validated in the exceedingly small Péclet regime Pe < 10−3,

which, for example, is encountered in electrophoresis of aerosols. Extensions of the current

model are straightforward and can be used to study polydisperse suspensions with mixtures

of different colloid materials, sizes, and/or aspherical shapes. In addition, the model also can

be extended to study EPD by replacing one of the periodic faces with a wall. Such particle-

based mesocale EPD models could then be used to simulate an entire EPD experiment in

order to elucidate optimal particle-packing strategies. However, the various treatments of

the interface, e.g., a flat surface, a lattice of particles, an amorphous monolayer, surface

charge heterogeneities, etc., can influence deposit microstructure in dramatically different

ways. Further testing is necessary to ensure whether mesoscale particle-based models can

suitably capture electrophoretic phenomena within the range of Péclet numbers pertinent to

EPD additive manufacturing.

Mesoscale EPD models must mitigate the computational difficulty inherent to disparate

time and length scales of bulk and deposition regimes. In comparison to the time steps

we use in our current simulations, a more refined time step is required to resolve colloid-

colloid and colloid-interface interactions within highly-packed deposits. Based on this work,

it may be possible to model regions exclusive to the deposition while accounting for bulk

electrophoretic motion by initializing the velocity of colloids with the Henry equation. Unlike

bulk electrophoresis where the electric field is uniform, EPD models must treat spatial and/or

temporal gradients in the applied field that may be introduced to control deposit morphology

and/or arise naturally as EPD progresses. Ultimately, the interplay of all of these effects

must be modeled correctly in order to reproduce the packing morphology, domain sizes,

deposition times, etc., from a variety of experimental EPD systems. A mesoscale EPD

model that describes extensive empirical data sets will help optimization and scale up of

EPD additive manufacturing.
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